Search for the Decay $B_c \rightarrow J/y + e + X$

Masato Aoki University of Tsukuba, Japan

For the CDF collaboration

Introduction

- The B_c is the only meson containing two differently flavored heavy quarks (bottom and charm)
- It was first seen by the CDF collaboration in 110pb⁻¹ of data collected during Run1 of the Fermilab Tevatron
 - mass $\sim 6.4 \text{GeV} (B_d \sim 5.3 \text{GeV})$
 - lifetime ~ 0.5 ps (B_d ~ 1.5 ps)
- Today's talk is about our plan on searching for the B_c in semileptonic decay mode $B_c \rightarrow J/\psi + e + X$ using recent CDF data in Run2

 $20.4_{-5.5}^{+6.2}$ signals above background $12.0_{-3.2}^{+3.8}$ (electron) $8.4_{-2.4}^{+2.7}$ (muon)

Reconstruction

- B_c can decay to J/ψ + lepton + X(neutrino...)
- This channel has large branching fraction
 - -Theoretical prediction(hep-ph/0401237): $B_c \rightarrow J/\psi e \nu \sim 1.23\%$
- We use $\mathbf{B_c} \rightarrow \mathbf{J/y} + \mathbf{e}$, followed by $\mathbf{J/y} \rightarrow \mathbf{m}^+ \mathbf{m}^-$ channel for this analysis

Backgrounds

- ✓ Fake electron

 use data
- ✓ Real electron
 - \checkmark Conversion \Leftarrow data and MC
 - \checkmark π^0 dalitz decay \Leftarrow MC
 - ✓ B-Bbar background \Leftarrow MC
 - ✓ C-Cbar background \Leftarrow data and MC?
 - ✓ (bcq) baryon background \Leftarrow ?
- ✓ Fake $J/\psi \Leftarrow$ use J/ψ mass sideband

Tevatron and CDF detector

 \sqrt{s} : 1.96 TeV

Proton-Antiproton collider

Changes from Run1:

- •Improve tracking
- •Improve trigger
- •Material increased
 - → conversion background

J/ψ reconstruction

We have

$$J/\psi \rightarrow \mu^+\mu^-$$
 trigger

• $p_T(\mu) \ge 1.5 GeV$

(was \geq 2GeV in Run1)

- We are collecting 5 times more yield of J/ψ→μμ than Run1
 - Gain in B→J/ψ yield is ~2(b-fraction in low energy J/ψ is smaller >> see J. Krauss' talk)

Soft electron reconstruction & ID

- Track based reconstruction
- Cut based or likelihood based ID
 (Cut base was used in Run1)
- Particle ID using dE/dx

Electron and Fake sample

electron sample

√γ→ee √J/ψ→ee

fake sample

- ✓ Generic tracks
- *Leptons are removed
 - Electron : 2σ away from $< dE/dx_{(electron)} >$
 - →2% electrons still remain

Likelihood based electron ID

Likelihood ratio: L

$$L = \frac{S}{S + B}$$

$$S = \prod_{i} \boldsymbol{P}_{e}^{i} \quad B = \prod_{i} \boldsymbol{P}_{B}^{i}$$

 P^i : Probability Density Function

We use 9 electron quantities as PDF

•Calorimeter: 2 variables

•Shower Max : 6 variables

•Central Preshower chamber: 1 variable

CDF Run2 Preliminary

Improvement by likelihood

Applied cut for e⁺e⁻

- Cut: Standard

Likelihood : at same reduction

Control samples for other background estimation

Fake electron and BBbar background

Conversion and dalitz decay background

Summary

- We are performing a search for $B_c \rightarrow J/\psi + e + X$ signal in Run2 CDF data
 - Run1 110pb⁻¹ ~10 events above background (S/N~1)
- Improvements in Run2
 - More luminosities(~250pb⁻¹ by FY03),
 - Tracking, electron identification, trigger...
 - ⇒ more signals
- We can precisely measure B_c signatures
 - Re-establish the signal
 - Mass, lifetime, branching fraction measurements

Backup Slides

electron quantities

- Calorimeter
 - E/p
 - $-E_{had}/E_{em}$
- Shower Max
 - E/p after correction
 - $-E_{\text{strip}}/E_{\text{wire}}$ after correction
 - $-\Delta X,\Delta Z$
 - $-\chi^2$ x, χ^2 z
- Central Pre-shower chamber
 - Charge after correction

Control samples for other background estimation

Fake electron and BBbar background

Conversion and dalitz decay background

